Identification of a MIMO state space model of an F/A-18 aircraft using a subspace method

نویسندگان

  • S. De Jesus - Mota
  • M. Nadeau Beaulieu
  • R. M. Botez
چکیده

H altitude or impulse response matrix I identity matrix j dummy index M Mach number R correlation coefficient S matrix of singular values STBL left stabiliser position STBR right stabiliser position t, Δt time, time step T projected state matrix multiplied by the instrument TEFL left trailing-edge flap deflection TEFR right trailing-edge flap deflection u system input vector U matrix of past or future inputs or matrix of singular vector v perturbation vector on the system outputs V future noise effect matrix or matrix of singular vector Var variance Vec operation which organises the parameters of a matrix into a column vector VERTL left rudder position VERTR right rudder position w perturbation vector on the system states W weight matrix WINGL left wing deflection WINGR right wing deflection x system state vector ABSTRACT

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

Aircraft Visual Identification by Neural Networks

In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...

متن کامل

Propagator-based methods for recursive subspace model identification

The problem of the online identification of multi-input multi-output (MIMO) state-space models in the framework of discrete-time subspace methods is considered in this paper. Several algorithms, based on a recursive formulation of the MIMO output error state-space (MOESP) identification class, are developed. The main goals of the proposed methods are to circumvent the huge complexity of eigenva...

متن کامل

Identification of a State Space Model for a Synchronous Machine

Application of a recursive subspace identification method to derive a state space model for a synchronous machine is described in this paper. Simulation studies show the effectiveness of such an algorithm to identify on-line a synchronous machine model over a wide range of operating conditions and disturbances. The model provides a foundation for further study on a MIMO adaptive power system st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009